ICAM - 03/06/2025

INTRODUCTION À LA RÉALITÉ VIRTUELLE

APPLICATIONS EN SANTÉ ET SPORT

guillaume.bouyer@ensiie.fr www.ensiie.fr/~bouyer/

Mon parcours

Ingénieur en Informatique (ENSIIE, 2003)

Doctorat en Réalité Virtuelle (Université Paris-Sud 11, 2007)

Maître de conférences en Informatique à l'ENSIJE (2008-)

Chercheur au laboratoire IBISC de l'Université Évry Paris Saclay

Réalité Virtuelle, Réalité Augmentée, Interactions Humains-Machines...

Feedbacks Multisensoriels, Mesure d'activité, Mécaniques Iudiques, Adaptation

Rech. génériques et appliquées. Rééducation motrice depuis 2015

© G. BOUYER ICAM / RÉALITÉ VIRTUELLE 2

Programme du mardi

<u>Concepts et Historique</u> de la Réalité Virtuelle

Applications en Santé

Canaux sensori-moteurs humains (et Interfaces) de Réalité Virtuelle

Démonstrations Casques et interactions immersives

Atelier de conception Exemples en rééducation

© G. BOUYER ICAM / RÉALITÉ VIRTUELLE 3

Programme du mercredi

Suite de l'atelier de conception Autres applications (selon le temps) : 1, 2

Démonstrations

Interface et interactions haptiques Jeux de rééducation du bras post-AVC Jeu de rééducation à la marche en RA Projets de recherche

IBISC SITE PELVOUX

UFR Sciences et Technologies accès au 36, Rue du Pelvoux CE1455 Courcouronnes 91020 Évry-Courcouronnes Cédex

RDV Hall B (entrée)

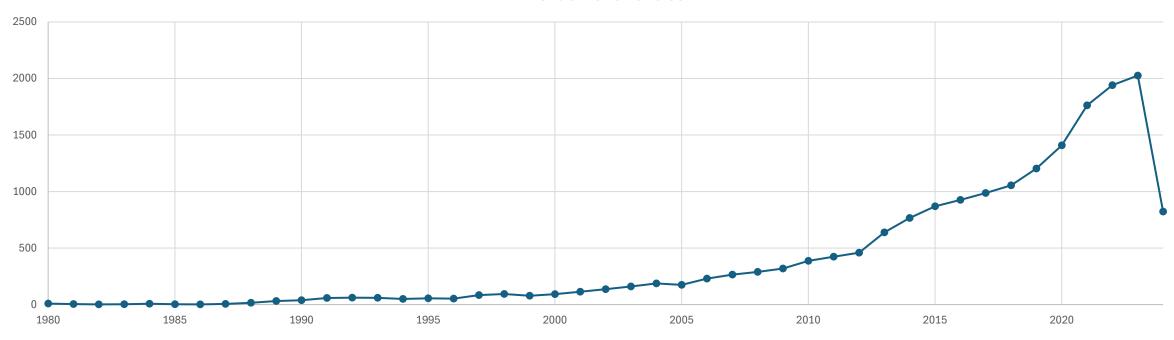
© G. BOUYER ICAM / RÉALITÉ VIRTUELLE 4

ICAM - 03/06/2025

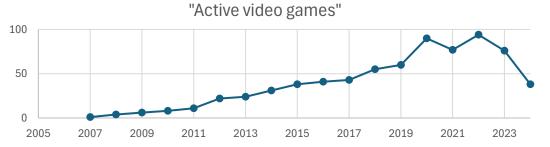
ATELIER: LES TECHNOLOGIES DE LA RV&A AU SERVICE DE LA RÉÉDUCATION MOTRICE

ensile

guillaume.bouyer@ensiie.fr www.ensiie.fr/~bouyer/


Quelques définitions

- Virtual Rehabilitation, VR-based Rehab.
 - Thérapies utilisant des technologies de réalité virtuelle et des simulations (Burdea 2003)
- Jeux sérieux (Serious Games)
 - Jeux dont l'objectif premier n'est pas le divertissement, le plaisir ou l'amusement (Michael 2006)
 - Applications/activités qui utilisent des éléments et des mécaniques de jeu pour atteindre des objectifs sérieux (ex. formation, éducation)
- Jeux vidéo actifs (Active Video Games AVG) / Exergames
 - Jeux vidéo qui exigent une activité physique supérieure à celle d'un jeu classique. Reposent sur des technologies de suivi des mouvements du corps (LeBlanc 2013)
 - Jeux qui promeuvent l'exercice physique pour améliorer la santé et le bien-être


© G. BOUYER

Evolution des publications

VR Rehabilitation and co.

Source: PubMed 06/24

© G. BOUYER

Estimation du Marché

vr rehab market

ScienceSoft

https://www.scnsoft.com > healthcare · Traduire cette page

Virtual Reality (VR) for Rehabilitation: Tech Overview

In 2022, the **VR market** in healthcare is valued at \$628 million. It's expected to reach \$6.2 billion by 2029 growing at a CAGR of 38.7%. **Rehabilitation** is among ...

How VR for rehab works · Success stories

LinkedIn · Trend Sculpt Studios

Virtual Reality Rehabilitation System Market Research ...

The "Virtual Reality **Rehabilitation** System **Market**" reached a valuation of USD xx.x Billion in 2023, with projections to achieve USD xx.

Market Research Future

https://www.marketresearchfuture.com > ... • Traduire cette page

Virtual Reality in Therapy Market Report - Forecast 2032

The Virtual Reality in Therapy **market** is projected to grow USD 10.13 Billion by 2032, exhibiting a CAGR of 31.20% during the forecast period (2024 - 2032).

GlobeNewswire

https://www.globenewswire.com > ... • Traduire cette page

VR Stroke Rehabilitation Market Worth US\$ 376 Billion by

10 mai 2023 — VR Stroke Rehabilitation Market Worth US\$ 376 Billion by 2033 Globally, at a CAGR of 9.2%, Says Future Market Insights, Inc. · With a market ...

- De 135m\$ en 2022 à 371m\$ en 2030
- De 325m\$ en 2021 à 2,3M\$ en 2030
- De 145M\$ 2022 à 376M\$ en 2033 (AVC)
- De 628m\$ en 2022 à 6,2M\$ en 2029
- ...
- Mindmaze 2023
 - Valorisation 1M\$
 - CA 30m\$/an

Source: Google 06/24

© G. BOUYER ICAM / RÉALITÉ VIRTUI

Enjeux en rééducation

Vieillissement, Nombre de patients en augmentation

Manque de moyens humains et financiers

Difficultés d'accès aux soins, aux dispositifs

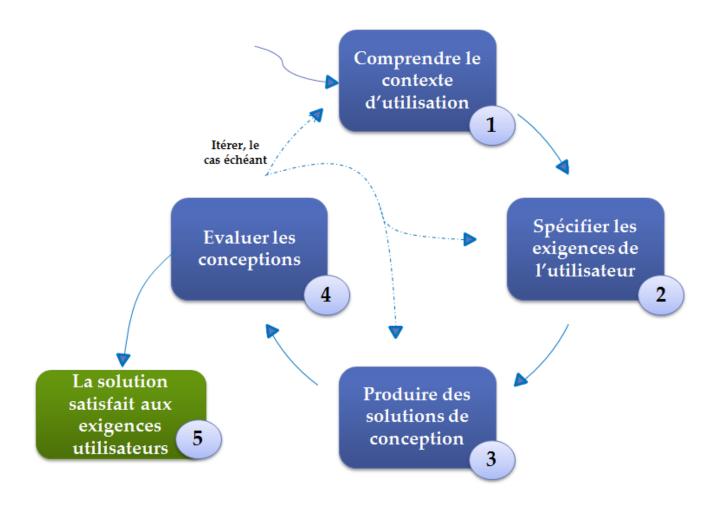
Manque d'adhésion et d'observance aux traitements,

fatigue, démotivation

Complémentarité des technologies et du jeu

Usage en autonomie voire à domicile

Mesures et Feedbacks des performances


Automatisation du paramétrage, Gain de temps

Situations nouvelles, inaccessibles

Motivation par le jeu, variété, challenge, amusement

Conception centrée utilisateur

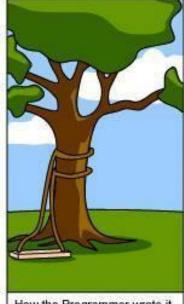
J. Veytizou, G. Thomann, F. Villeneuve. Un produit universel pour une interface sur mesure. Colloque Jeunes Chercheurs et Jeunes Chercheuses, Jun 2013, France.

© G. BOUYER

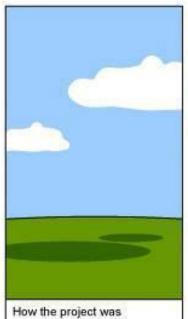

Analyse des besoins des utilisateurs

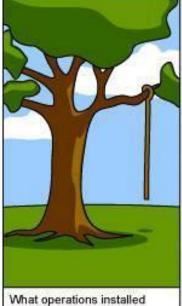
- Analyse et formalisation de l'activité existante
- Quelles activités/objectifs dans l'environnement virtuel ?
 Quels comportements/bénéfices attendus du système ?
- Quels utilisateurs?
 - Utilisateurs principaux : patients
 - Utilisateurs secondaires : thérapeutes
 - Nombres ? Diversité ?
 - Profils (capacités sensori-motrices, expertise, préférences) ?
- Quelles contraintes (techniques, usage...)?
- Empathie
 - comprendre l'expérience, la situation des personnes qui vont utiliser

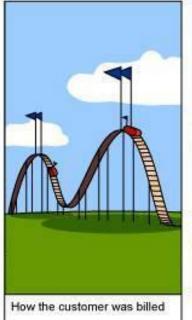
© G. BOUYER

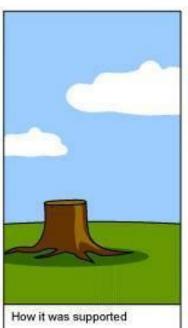


How the Project Leader understood it


How the Analyst designed it


How the Programmer wrote it




How the Business Consultant described it



documented

needed

Processus de conception

- « État de l'art »
- Documents de conception
- Choix des interfaces matérielles
 - Doivent servir les interactions et idéalement être choisies après la conception
 - Ne doivent pas aller à l'encontre des besoins
 - Besoin de connaitre leur potentiel et leurs limites
 - Ex: HMD vs. Cave vs Moniteur, Kinect vs Leap Motion, Meta Quest vs Apple Vision Pro...
- Développement et tests itératifs
 - Ajouts successifs de fonctionnalités/interactions/contenu
 - A valider avec les utilisateurs finaux ou des participants représentatifs
 - Différentes méthodes des plus informelles aux plus scientifiques

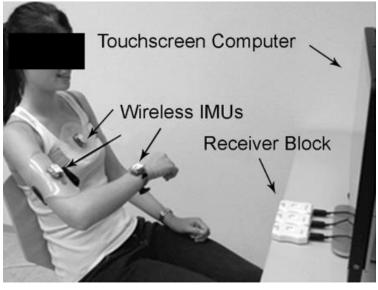
G. BOUYER ICAM / RÉALITÉ VIRTUELLE

Atelier

- En petits groupes
- Choisissez une pathologie motrice ou une partie du corps à entrainer/rééduquer + le profil des patients/sportifs
- Imaginez le contexte et les pratiques de rééducation actuelles
- Qu'attendez-vous de votre nouveau système en réalité virtuelle ou augmentée ?
 Proposez une solution interactive
 - Tâches à réaliser, interactions
 - Interfaces matérielles associées
 - Contenu et fonctionnalités logicielles obligatoires à développer
- Simulez votre solution pour la tester, la confronter au contexte d'usage et aux besoins des utilisateurs, Précisez-la ou adaptez-la si besoin.
- Proposez des fonctionnalités supplémentaires

© G. BOUYER ICAM / RÉALITÉ VIRTUE

Exemples: Rééducation motrice post-AVC



[Wittman et al. 2016]

Exemples : Rééducation du membre inférieur

ETH Zurich

Motek Medical

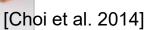
Description générique

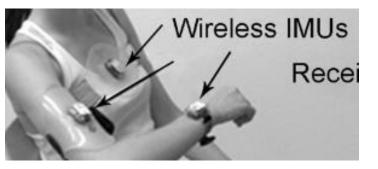
- 2 utilisateurs
 - 1 patient.e
 - 1 thérapeute
- Technologies interactives
 - Capture de mouvement (tracking) et Interactions
 - Visualisation
- Tâches/Exercices/Jeux
- Avatar du patient
- Paramétrage
- Coaching virtuel

G. BOUYER ICAM / RÉALITÉ VIRTUELL

Utilisateurs

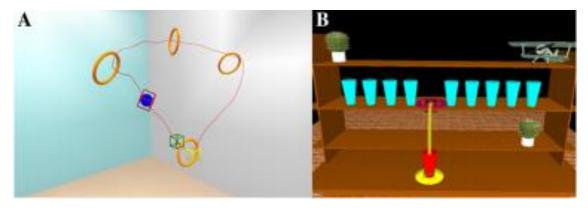
- 1 patient.e
- 1 thérapeute
- Présence souvent simultanée




G. BOUYER ICAM / RÉALITÉ VIRTUELLE

Technologies interactives

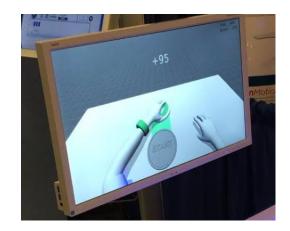
- Capture de mouvement et interactions
 - Centrales inertielles
 - Capture optique infrarouge (mocap)
 - Caméras 2D ou 3D
 - Gants de données
 - Objets tangibles, manettes, boutons
 - Autres capteurs et actionneurs : haptique, physio...
- Visualisation
 - Écrans ou surfaces + ou grands
 - Immersif ou augmenté (casques) : plus récent
- À adapter aux besoins et contraintes
 - Handicaps, assis ou debout...



ICAM / RÉALITÉ VIRTUELL

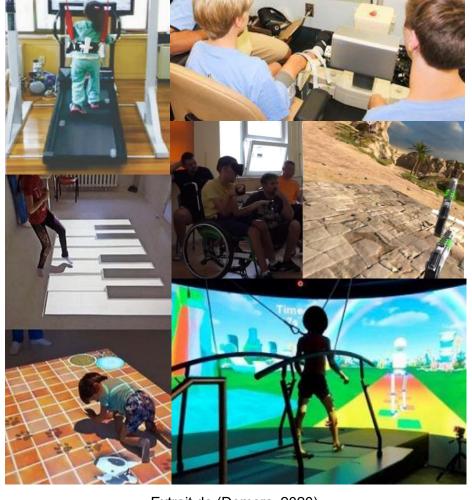
Tâches/Exercices/Jeux

- Basées sur l'expertise thérapeutique et les mouvements
- Types de tâches
 - Écologiques (vie réelle)
 - Pointage
 - Récupération de cibles en mouvements
 - Suivi de trajectoire
 - Plan 2D ou espace 3D
- Principes de l'apprentissage moteur
 - Répétition
 - Intensité
 - Orientées sur objectif fonctionnel
 - ...



[Turolla et al. 2013]

[Jang et al. 2005]

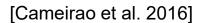


[Kiper et al. 2011]

Tâches/Exercices/Jeux

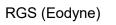
- Environnement virtuel
- Jeu
 - Rendre les tâches thérapeutiques plus variées, amusantes, et (on l'espère) motivantes
 - Augmenter l'observance, l'intensité, l'adhésion
 - Inclure les proches

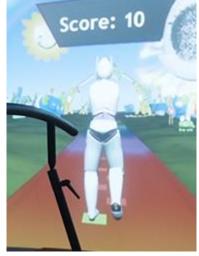
[Shin et al. 2014]


Extrait de (Demers, 2020)

Mesures et feedbacks

- Enregistrer et analyser les données issues de l'activité motrice, pour fournir des informations pertinentes aux patients et thérapeutes
- Feedback (rétro-actions)
 - KR Knowledge of Results / KP Knowledge of Performance
 - Continus / Terminaux
- Formes classiques
 - Scores, récompenses
 - Effets visuels et sonores
 - Tableaux de bord simplifiés ou détaillés
 - Valeurs numériques
 - Graphiques, Historique...
 - Export de bilans...




Mesures et feedbacks

Avatar

- Vues variables du corps complet ou du membre concerné
- 1^{ère} ou 3^{ème} personne
- Objet ou personnage virtuel
- Réaliste, simplifié, modifié

Stevens Inst. Of tech (2021)

Motek

Follow my movement as far as you can and return to the starting position. 33 cm 33 cm 1/3 0:08

Evolv

RGS Hocoma

Paramètres et Coaching

- Paramétrage
 - Gestion des patients
 - Personnalisation du protocole thérapeutique
 - Personnalisation des exercices
 - Manuel ou assisté
 - Ex. difficulté adaptative
- Coaching
 - Forme de feedback
 - Accompagnement à la performance, la motivation
 - Personnifié ou non



de Kok et al. (2017)

G. BOUYER

Exemples connexes : Activité physique et sportive

- Etude du geste sportif
- Entrainement sportif professionnel
- Maintien/remise en forme personnels (fitness...)

WiiSports

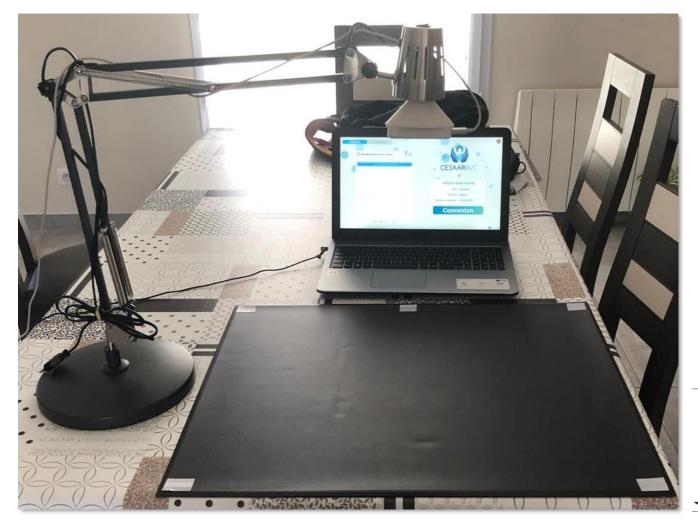
Nintendo Wii

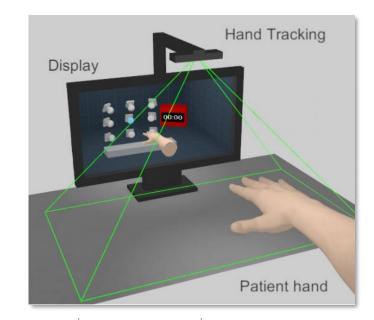
CRVM, 2007

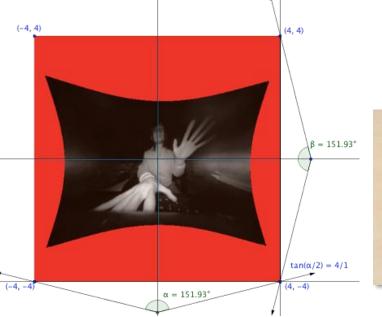
INRIA 2017

RÉÉDUCATION POST-AVC DU MEMBRE SUPÉRIEUR

Projet CESAAR-AVC (2016-2022)

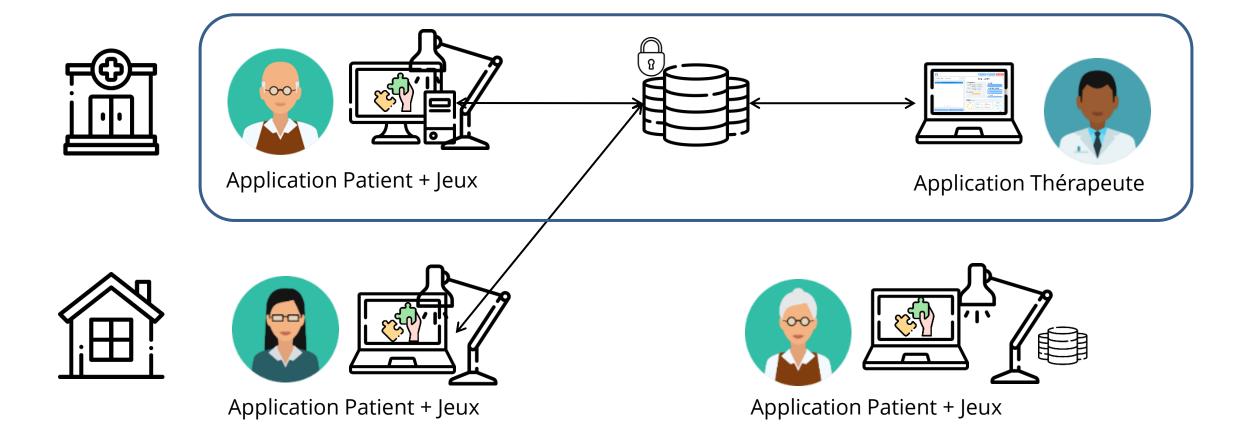


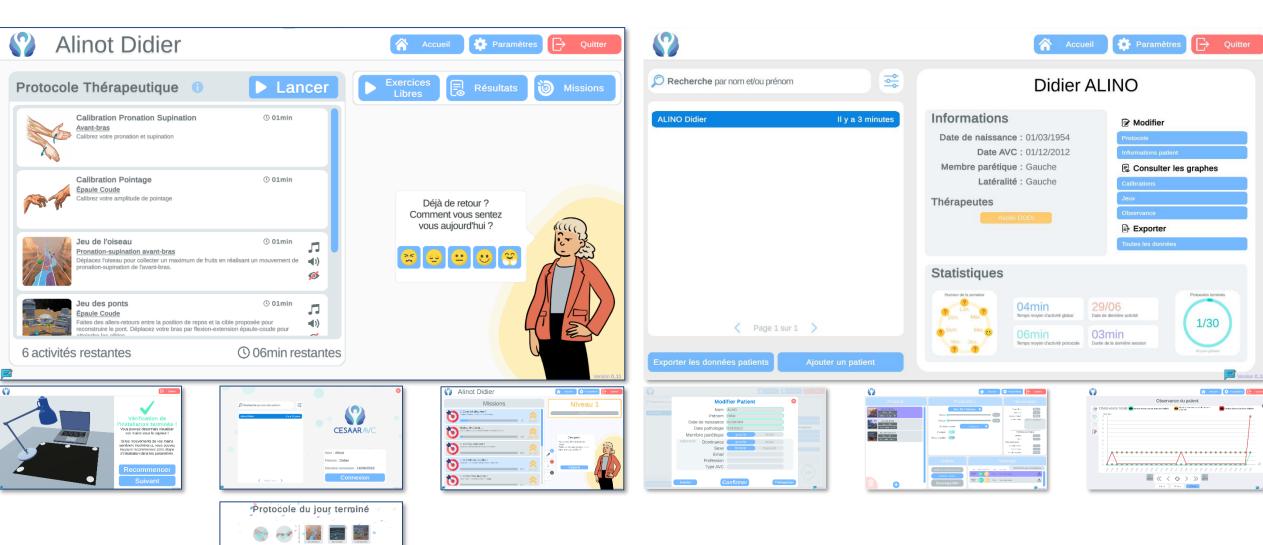

© G. BOUYER ICAM / RÉALITÉ VIRTUELL


- Utilisateurs
 - Principaux : Patients de tous âges, post-AVC, phases aiguë, subaiguë et chronique, handicaps moteurs, potentiels autres handicaps
 - Secondaires : Médecins et ergo-thérapeutes
- Un système d'assistance à la rééducation
- Autonomie ou semi-autonomie
 - Simple d'installation
 - Pas d'accompagnement en direct
 - Suivi asynchrone
- Bas coût

© G. BOUYER

Dispositifs matériels





Principe d'utilisation

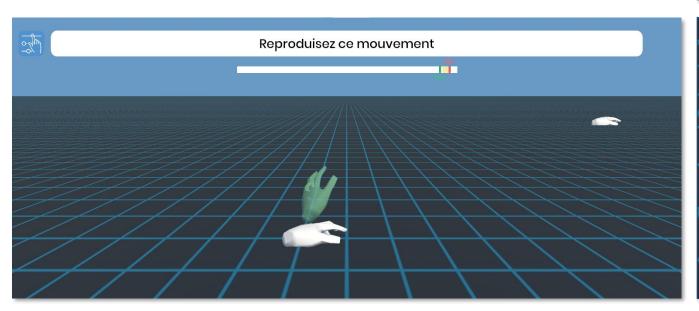
Patient

Thérapeute

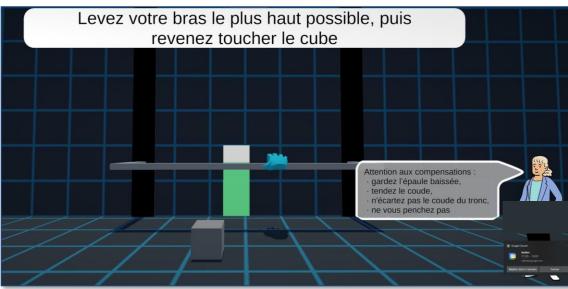
3 Jeux

- Prono-supination de l'avant-bras
- Contrôle d'un oiseau dans un « runner »

- Pointages de cibles
- Allers-retours répétés entre une zone de repos et des ponts à reconstruire



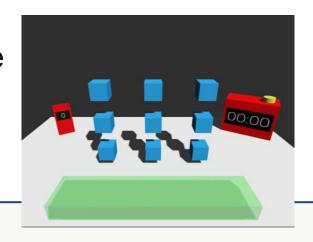
- Suivi précis de trajectoire courbe
- Activation d'une suite d'objets
- 2 modes : Horizontal/Vertical

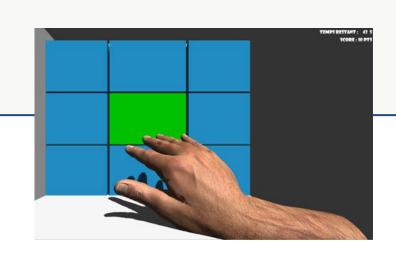

© G. BOUYER ICAM / RÉALITÉ VIRTUELL

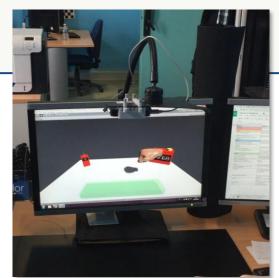

2 Exercices de calibration

- Evaluation des capacités sur tâches guidées
- Adaptation des jeux aux patients

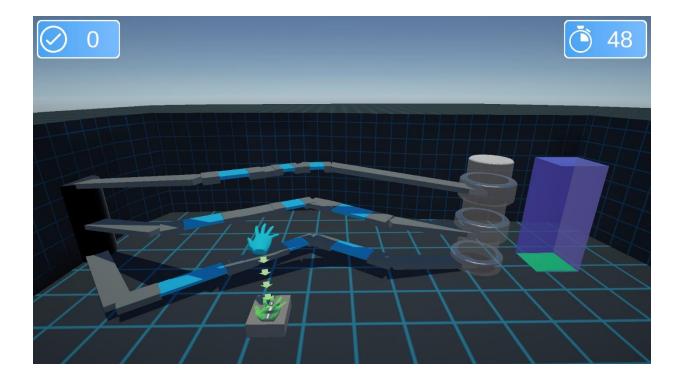
Angles de prono-supination

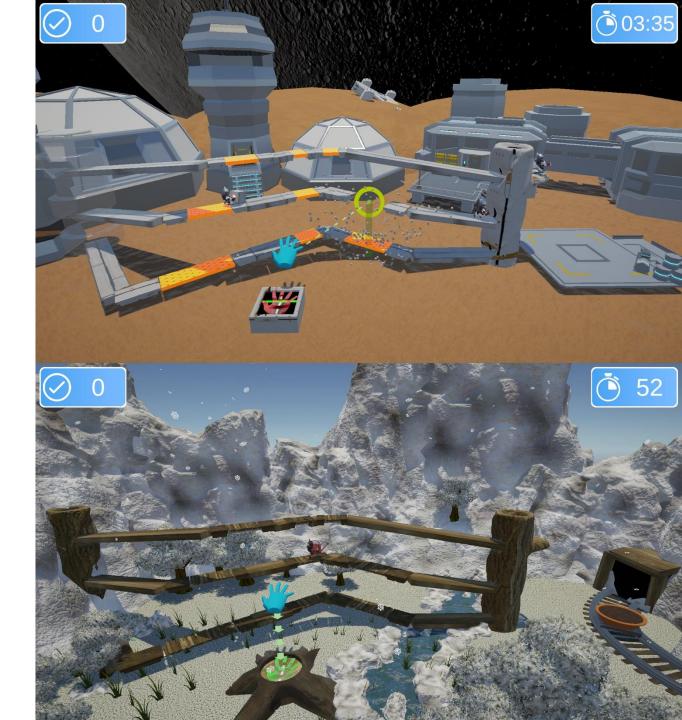



Amplitude de mouvement épaule-coude

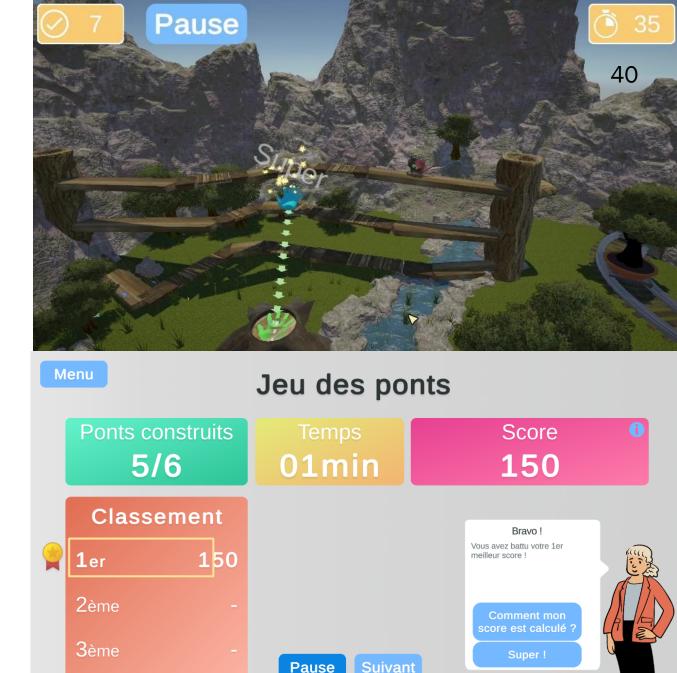

© G. BOUYER ICAM / RÉALITÉ VIRTUELL

- Prototype du dispositif
- Mouvement et mécanique thérapeutique
- Avatar de main




© G. BOUYER

- Jeu/Gameplay/Environnement
 - Aide d'un personnage sympathique en construisant des ponts
 - Génération à partir de la calibration


© G. BOUYER ICAM / RÉALITÉ VIRTUEL

- Assistances à l'interaction
 - Tâche
 - Viseur animé
 - Trajectoire main-cible animée
 - Main fantôme
 - Perception de la profondeur
 - Ombres
 - Parallaxe caméra
 - Contenu de la scène
- Feedbacks
 - Réussite, tentative, échec
 - Sons, textes et effets visuels

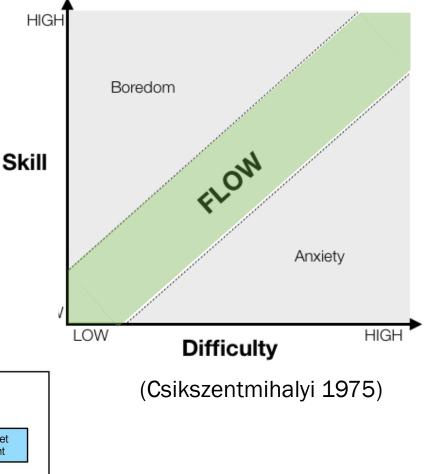
- 4 environnements visuels
 - 1 simple
 - Modèles, textures et animations 3D
 - Couleurs compréhensibles et visibles

- Interface utilisateur 2D (UI)
 - Ergonomie cognitive
 - Temps et score en jeu
 - Informations détaillées finales
 - "Coach"

Aspects motivationnels

- Scores
- Théorie du flow
- Modèle de difficulté fondé sur les aptitudes et l'endurance

Modèle de difficulté


Génération

d'exercice

Patient

Calibration

 Processus d'ajustement par génération de niveaux sous contraintes

G. BOUYER ICAM / RÉALITÉ VIRTUELLE

Mesure des

performances

Évaluation et

Aiustement

Session

Exercice suivant

Complétion de

l'exercice

Résultats préliminaires

- Projet très bien accueilli par le grand public, les patients et les thérapeutes
- Dispositif
 - Coût bas
 - Facilement transportable et installable
 - Robustesse logicielle
- Utilisabilité patients
 - Eval. SUS $2019 = 80.1 \pm 13.6$ (entre bon et excellent)
 - Courbe d'apprentissage encourageante
- Effets visibles des jeux sur l'activité, et prometteurs sur la motivation

- Adéquation besoins/technologies
 - Limite de la capture de la main pour certains patients (spasticité)
 - Compensations
 - Déficiences visuelles et cognitives
- Perspectives
 - Evaluations expérimentales spécifiques (avatar, profondeur, feedbacks)

G. BOUYER ICAM / RÉALITÉ VIRTUELLE

RÉÉDUCATION À LA MARCHE

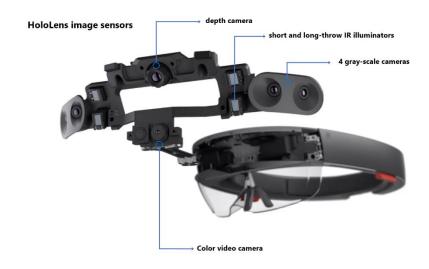
Projet ARROW (2018-2022, 2024-2026)

Un jeu sérieux en réalité augmentée pour la rééducation à la marche

© G. BOUYER ICAM / RÉALITÉ VIRTUE

Utilisateurs

- Principaux : Patients pédiatriques, paralysie cérébrale, post-opératoire (SEMLS), période 3 6 mois après opération
- Secondaires : Médecins et ergo-thérapeutes


Objectifs

- Augmenter la motivation
- Augmenter la quantité de marche
- Améliorer la qualité de marche
- Dans un environnement réel avec aides à la marche

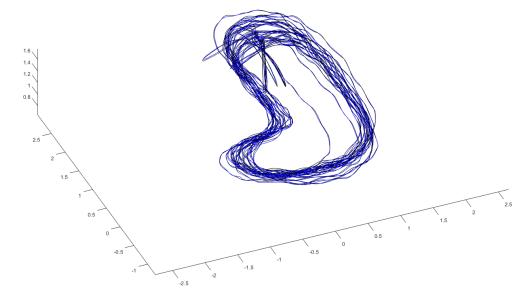
CAM / RÉALITÉ VIRTUELLE

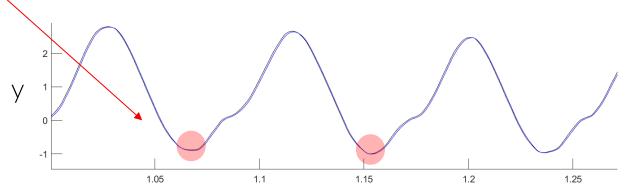
Dispositifs matériels

- Lunettes de RA Microsoft Hololens
 - Capteurs de pose
 - Vue Environnement réel + éléments virtuels
- Mobile et autonome, installation simple, compatible avec les aides
- MOCAP pour les expérimentations

Processus de conception

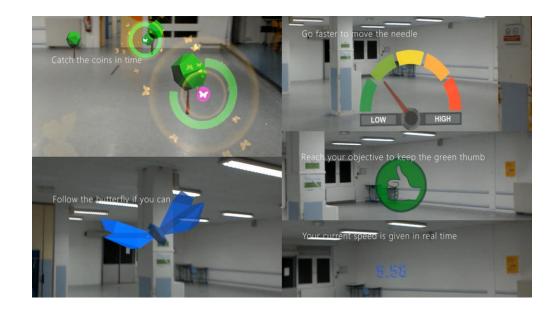
- Prototypage, apprivoisement technologique
- Validation de la robustesse du tracking

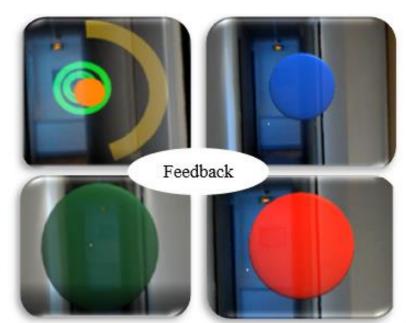

Guinet, A. L., Bouyer, G., Otmane, S., & Desailly, E. (2019). Reliability of the head tracking measured by Microsoft Hololens during different walking conditions. Computer Methods in Biomechanics and Biomedical Engineering, 22(sup1), S169–S171.


© G. BOUYER ICAM / RÉALITÉ VIRTUE

Mesures des performances de marche

- Hololens => Pose de la tête
 - Chemin parcouru
 - Vitesse
- Filtrages + Seuils => « Heel strikes »
 - Longueur de pas
 - Cadence
 - Distance parcourue




Guinet, A.-L., Bouyer, G., Otmane, S., & Desailly, E. (2021). Validity of Hololens Augmented Reality Head Mounted Display for Measuring Gait Parameters in Healthy Adults and Children with Cerebral Palsy. Sensors, 21(8), 2697

© G. BOUYER ICAM / RÉALITÉ VIRTUELLE

Processus de conception

- Raffinement des objectifs thérapeutiques : vitesse
- Choix de la mécanique thérapeutique / tâche
- Recherche et conception des feedbacks
- Pré-expérimentation participants sains
- Expérimentation feedbacks et patients

Processus de conception


- Application finale
 - 1 protocole sur 12 séances
 - 1 calibration
 - 1 jeu
 - Des feedbacks
 - Interface graphique dans le casque
- Evaluation clinique (en cours)

G. BOUYER ICAM / RÉALITÉ VIRTUELLE

Résultats préliminaires

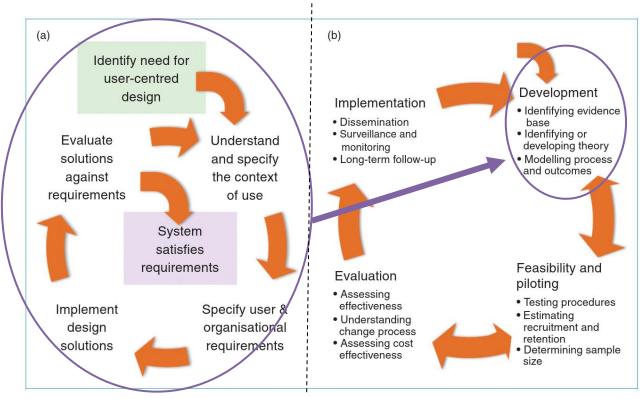
- Détection des paramètres de marche depuis la pose de la tête
- 1^{ers} résultats encourageants sur la performance et l'adhésion des patients
- Résultats en cours sur l'impact des feedbacks sur la vitesse de marche

- Limites technologie Hololens
 - Coût
 - Champ de vision virtuel
 - Poids et ergonomie
- Adhésion patients
 - Limites actuelles du jeu proposé
- Adhésion Thérapeutes
 - Appropriation et utilisation réelle

G. BOUYER ICAM / RÉALITÉ VIRTUELLE

BILAN

DÉFIS ET OPPORTUNITÉS


Rééducation motrice en RV&A

- Domaine vaste, nombreux travaux, notamment pour certaines pathologies (AVC)
 - Résultats souvent positifs sur l'apport thérapeutique mais des biais ou difficilement généralisables
- Complément (et pas remplacement) de la rééducation conventionnelle
 - "Combiner les différentes approches conventionnelles et instrumentées" [Haute Autorité de Santé, 2012]
 - Pas adapté à tous les besoins/patients
- Etudes et développements supplémentaires nécessaires
 - Notamment pour déterminer l'impact de chaque élément

G. BOUYER

Défis du pluridisciplinaire IHM / Santé

- Approches et expertises différentes
 - Vocabulaire
 - Méthodes
 - Processus
 - Evaluations
 - Utilisabilité
 - Utilité clinique
 - Publications
 - Etat de l'art
 - Contenu
- → Ouverture et communication

Blandford, A., Gibbs, J., Newhouse, N., Perski, O., Singh, A., & Murray, E. (2018). Seven lessons for interdisciplinary research on interactive digital health interventions. DIGITAL HEALTH, 4.

G. BOUYER ICAM / RÉALITÉ VIRTUE

Défis de la conception centrée utilisateurs

- Intégrer les patients et thérapeutes dans le processus
 - Accès et temps
 - Variété des profils et des expertises
- Analyse d'activité
 - Formalisation des pratiques
- Cycle de développement
 - Temps
 - Choix et hiérarchisation des fonctionnalités
 - Itérations chronophages
- Evaluations
 - Choix des méthodes
 - Temps

© G. BOUYER

- Implémentation dans les pratiques et les établissements
- Validation clinique
- Contraintes règlementaires (CE, DM...)
- Amélioration continue du produit
- Commercialisation

→ Financement + Temps + Partenaire industriel

© G. BOUYER ICAM / RÉALITÉ VIRTUELL

Références principales

- David, Ludovic (2019). Conception et évaluation d'un système de réalité virtuelle pour l'assistance à l'auto-rééducation motrice du membre supérieur post-AVC [Université Paris-Saclay, Université d'Evry]. https://hal.science/tel-02571389
- Guinet, Anne-Laure (2022). Multimodal sensory feedback in augmented reality for gait rehabilitation in children with cerebral palsy [Université Paris-Saclay, Université d'Evry]. https://theses.hal.science/tel-04415291

© G. BOUYER ICAM / RÉALITÉ VIRTUE

ATELIER: LES TECHNOLOGIES DE LA RV&A AU SERVICE DE LA RÉÉDUCATION MOTRICE

guillaume.bouyer@ensiie.fr www.ensiie.fr/~bouyer/

